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problems that lie ahead [10l]. They identify several serious deficiencies of
current systems. For example, terminatiom criteria are still poorly understood.
2lthough INTERNIST can diagnose sinultarneous diseases, it alsc pursues all
abnormal findings to completion, even though a clinician often 4ignores minor
unexplained abnormalities if the rest of a patient”s clinical status {is vell
understood. In additiom, although some of these programs now cleverly mimic
some of the reasoning styles observed in experts {14]),[48], it 1is less clear how
to keep the systems from abandoning one hypothesis and turning to another one as
soon as new information suggests another possibility. Programs that operate
this way appear to digress from ome topic to another -— a characteristic that
decidedly alienates a user regardless of the validity of the final diagnosis or

advice.

$  Comclusicms
This review has shown that there a2re two recurring issues to confront in
considering the field of computer-based clinicel decision making:

(1) Bow can we design systems that reach better, rwore reliable decisiens in a
broad range of applications, arnd

(2) How can we more effectively encourage the use of suth systems by physicians
or other intended users?

We shall summarize by reviewing these points separately.

Performance Issues

Central to assuring a program’s adequate performance is a matching of the
most appropriate technique with the problem domain. We have seen that the
structured logic of clinical algorithms can be effectively applied to triage
functions and other primary care problems, but they would be less naturally
matched with complex tasks such as the diagnosis and management of acute renal
failure. Good statistical data may support an effective Bayesian program in
settings where diagmostic categories are small in number, non-overlapping, and
well-defined, but the lack of higher 1level domain knowledge Iimits the
effectiveness of the Bayesian approach in more complex patient management or
diagnostic environments. A mathematical approach may support decision making in
certain vwell-described fields in which observations are typically quantified,
and related by functional expressions. These examples, and others, demonstrate
the the need for thoughtful consideration of the technicue most appropriate for

managing a cliniczl problem. In general the simplest effective methodology is
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to be preferred, but acceptability issues must also be considered as discussed
belcw.

It is zlso always appropriate to ask whether computer-based approaches are
needed at all for a given decision wmaking task. The «clinical algorithm
developers, for -example, have almost uniformly discarded the machine, and
Schwartz et al. pointed out that a wuseful decision anmalysis can often be
accomplished in a qualitative manner using paper and pencil [87].

Finally, it is important to comsider the extent to which a program’s
"understanding"” of its task domain will heighten its performance, particularly
in settings where knowledge of the field tends to be highly judgmental and
poorly quantified. We use the term "understanding” here to refer to the degree
of judgmental or structural knowledge (as opposed to data) that is contained in
the program. Analyses of human clinical decision making [14], (48] suggest that
as decisions move from simple to complex, a physician’s reasoming style becomes
less algorithmic and more heuristic, with qualitative judgmental knowledge and
the conditions for invoking it coming increasingly into play. It is likely that
medical computing researchers will sipilarly hawve to becorme "knowledge
engineers'" in the sense that they will 1look for effective ways te match the
knowledge structures that they use to the complexity of the tasks they are

undertaking.

Acceptability Issues

A recurring observation as one reviews the literature of computer-based
medical decision making is that essentially none of the systems has been

effectively utilized outside of a research environment, even when its

performance has been shown to be excellent! This suggests that it may be an

error to concentrate our research effort primarily on improving the decision
mzking performance of computers when there is evidently much more required
before these systems will have c¢linical impact. It is tempting to conclude that
the biases of medical personnel 2zgainst computers are so strong that systems
will ipevitzbly be rejected, regardless of performance, and in fact there are
some data to support this view [99]. However, we are beginning to see axamples
of applicaticens in which initial resistance to automated techniques has
gradually been overcome through the incorporation of adequate syster benefits
(112jy.

Perhaps one of the most revealing lessons on this subiect is an observation
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regarding the system of Mesel et al. that we described earlier ({64]. Despite
docurented physician resistance to clinical algorithms in otter settings ([3¢4],
the physicians in Mesel’s study =zccepted the guidance of protocols <for the
management of chemotherapy in their cancer patients. It is likely that the key
to acceptance in this instance is the fact that these physicians had previously
had no choice but to refer their patients with cancer to the tertiary care
center in Birmingham where all complex chemotherapy was administered. The
introduction of the protocols permitted these physicians to undertake tasks that

thevy had previously been unable to do, and it simultzneously allowed maintenance

of close dector- patient relationships and helped the patients avoid frequent
long trips to the center. The motivation for the physician to use the system is
clear in this case. It 1is reminiscent of Rosati’s assertion that physicians
will first welcome ccmputer decision aids when they become aware that colleagues
who are using the machinme have a clear advantage in their practice [81].

A heightened awareness of "human engineering” issues among wmedical
computing researchers 1is also apt to help improve acceptance of computers by
physicians. Tox has recently reviewed this field in.detail [1i8]. The issues
range from the mechanics of interaction at a computer terminal to progran
characteristics designed to make the system appear as a tool for the phvsician
rather than a dogmatic advice-giving machine.

Adequate attention must also be given to the severe time constraints
perceived by physicians. Ideally they would like programs to take no more time
than they currently spend when accomplishing the same task on their own. Time
arnd schedule pressures are similarly liliely to explain the greater resistance to
automation among interns and residents than among medical students or practicing
physicians in Startsman’s study [99].

Finaily it must be noted that acceptability issues should generzlly be
considered from the outset in a2 system’s design because they may dictate the
choice 0of methodology as much as the task domain itself does. The role of
formal knowledge structures to facilitate explanation capabilities, for example,
may argue in favor of wusing symbolic reasoning techniques even when a scmewhat

less complex methodology might have been zdequate for the decision task.

-

In summary, the trend towards increased use of knowledge engineering
techniques for clinical decision programs has been in response to desires for

both improved performance and improved zacceptance of such systems. As greater
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experience 1is gaired with <these techniques and they become better known
throughout the mediczl cooputing ccmmunity, it is lilely that we will see
increasingly powverful unions between symbolic reasoning and the alternate
methodolecgies we have discussed. Cne lesson to be drawn lies in the recognition
that there is basic computer science research to be done in wmedical computing,
and that the field is more thapn the application of established computing

techniques in medical domains.
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THE ART OF ARTIFICIAL INTELLIGENCE:

1. Themes and case studles of knowledge engineering

Edward A. Feigenbaum

Department of Computer Science,
Stanford Universicy,
Stanford, California, 94305.

Abstract

The knowledge engineer practices the arr of
bringing the principles and tools of AI research
to bear on difficult applications problems

their solutfon.
this knowledge,

requiring experts” knowledge for
The techanical issues of acquiring
representing 1it, and using it appropriacely to
construct and explain lines~-of-reasoning, are
important problems in the design of knowledge-
based systems. Various systems that have achieved
expert level performance in scientific and medical
inference {1luminate the art of knowledge
engineering and {ts parent science, Artificial
Intelligence.

INTRODUCTION: AN EXAMPLE

This is the first of a pair of papers that
will exaaine emerging thenmes of knowledge
engineering, {llustrate them with case studies
drawn from the work of the Stanford Heuristic
Programming Project, and discuss general issues of

knowledge engineering arct and practice.

Let wme begin with an example new to our
workbench: a system called PUFF, the early fruit
of a collaboration between our project and a group
ac the Pacific Medical Center (PMC) in San
Francisco.

PMC’s
diagnosis of

A physician refers a patient to
pulmonary function testing 1lab for
possible pulmonary function disorder. For one of
the tests, the patient inhales and exhales a few
times in a tube connected to an
instrument/computer combination. The instrument
acquires data on flow rates and volumes, the so-
called flow-=volume loop of the patient’s lungs and
airways. The computer measures certain parameters
of the curve and presents them to the
dtagnostician (physician or PUFF) for
interpretation. The diagnosis is made along these
lines: normal or diseased; restricted lung disease
or obstructive airwvays disease or a combination of
both; the severity; the 1likely disease type(s)
(e.g+ emphysema, bronchitis, etc.); and other
factors important for diagnosis.
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PUFF is given not only the measured data but
also certain {tems of information from the patient
record, e.g. sex, age, number of pack-years of

cigarette smoking. The task of the PUFF system is
to infer a diagnosis aand print 1t out in Engltsh
in the normal medical summary sform of the
interpretation expected by the referring
physician.

Everyching PUFF knows about pulmonary

function diagnosis 1is contained in
rules of the IF...THEN... form. No textbook of
medicine currently records these rules. They
constitute the partly-publiec, partly-private
knowledge of “ an expert pulmonary physiologist at
PMC, and were extracted and polished by project
engineers working intensively with the expert over
a period of time. Here is an example of a PUFF
rule (the unexplained acronyms refer to various
data measurements):

(currently) 55

RULE 31

IF:

1) The severity of obstructive airways
disease of the patient is greater than or
equal to mild, and

2) The degree of diffusion defect of the
patient is greater than or egual to mild,
and

3) The tlc(body box)observed/predicted of
the patient is grester than or equal to 110
and

4) The observed-predicted difference in
rv/tle of the patient is greater than or
equal to 10

THEN:

1) There is strongly suggestive evidence
(+9) that the subtype of obstructive airways
disease i{s emphysema, and

2) It is definite (1.0) that "QAD,

Diffusion Defect, elevated TLC, and elevated
RV together {ndicate emphysema." 13 one of
the findings.




One hundred cases, carefully ctiosen
the variety of disease states with sufficient
exenplary tinformation for each, were used to
extract the 55 rules. As the knowledge emerged, it
was represented in rule form, added to the system

to span

and tested by running additional cases. The
expert was sometimes surprised, sometimes
frustrated, by the occasional gaps and

inconsistencies in the knowledge, and the
incorrect diagnoses that were logical consequences
af the existing rtule set. The 1interplay between
knowledge engineer and expert gradually expanded
the set of rules to remove most of these problems.

As cumulation of techaiques 1in the art
demands and allows, a new tool was not invented
when an old one would do. The knowledge engineers
pulled out of their toolkit a version of the MYCIN
system (to be discussed later), with the rules
about {nfectious diseases removed, and used it as
the inference engine for the PUFF diagnoses. Thus
PUFF, like MYCIM, {s a relatively simple backward-
chaining inference system. It seeks a valid line-~
of-reasoning based an its rules and tooted {n the
instrument and patient data. With a little more
work at fitting some existing tools together, PUFF
will be able to explain this line-of-reasoning,
}usc as MYCIN does.

As it is,
interpretation,
example:

the final
following 1s an

PUFF only prints out
of which the

PATIENT DATA:

The degree of dyspnea: MODERATELY-SEVERE
The severity of coughing: MILD

Sputum production MODERATELY-SEVERE

The number of pack-years of smoking: 48
referral diagnosis: BRONCHITIS
IVC/IVC-predicted: 80

RV/RV-predicred: 191

FVC/FVC-predicted: 87

TLC(body box)observed/predicted: 127
Predicted FEV!/FVC: 83

TLC (DLCO)observed/predicted: 83
FEVI/FVC rattio: 50

RV/TLC Observed-Predicted: 21
MMF/MMF-predicted: 19

the DLCO/DLCO-predicted: 48

The slope (FSO_obs~F25_obs)/FVC_obs: 19

DEGREE OF OBSTRUCTIVE AIRWAYS DISEASE:

OAD degree by SLOPE: (MODERATELY-SEVERE
0)

OAD degree by MMF: (SEVERE 900)

OAD degree by FEVl: (MODERATELY-SEVERE
700)
FINAL OAD DEGREE: (MODERATELY-SEVERE

910) (SEVERE 900)
No conflict. Final degree:
(MODEPATELY-SEVERE 910)
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INTERPRETATION:

Obstruction is Iindicated by curvature of
the flow-volume loop.

Forced Vital Capacity is normal and peak
flow rates are reduced, suggesting

airwvay obstruction.

Flow rate from 25-75 of expired volume is
reduced, indicating severe airway
obstruction.

0AD, Diffusion Defect, elevated TLC, and
elevated RV together indicate emphysema.
OAD, Diffusion Defect, and elevated RV
indicate emphysems.

Change i{n expired flow rates following
bronchodilation shows that there is
reversibility of airway obstruction.

The presence of a productive cough is an
indication that the 0AD is of the
bronchitic type.

Elevated lung volumes indicate
overinflation.

Air trapping i{s indicated by the elevated
difference between observed and predicted
RV/TLC ratios.

Improvement in alrway resistance indicates
some reversibility of airway

Afirvay obstruction'ls consistent with the
patient’s smoking history.

The airway obstruction accounts for the
patient’s dyspnea.

Alchough bronchodilators were not

useful in this one case, prolonged use may
prove to be beneficial to the patient.
The reduced diffusion capacity indicates
airvay abstruction of the mixed
bronchitic and emphysematous types.

Low diffusing capacity indicates loss of
alveolar capillary surface.

Obstructive Airways Disease of mixed types

150 cases not studied during the knowledge
acquisition process were used for a test and
validation of the rule set., PUFF {inferred a
diagnosis for each. PUFF-produced and expert-
produced interpretations were coded for
statistical analysis to discover the degree of
agreement. Over various types of disease states,
and for two conditions of match between human and
computer diagnoses (“same degree of severity" and
"within one degree of severity”), agreement ranged
between approximately 90X and 100X.

The PUFF story {8 just beginning and will be
told perhaps at the next IJCAI. The surprising
punchline to my synopsis is that the current state
of the PUFF system as described above was achieved
in less than 50 hours of interaction with the
expert and less than 10 man-weeks of effort by the
knowledge engineers. We have learned much 1in the

-
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pist decade of the art of
based intelligent agents!

engineering knowledge-

In the repainder of this essay, 1 would like
to discuss the route that one research group, the
Stanford Meuristic Programming Project, has taken,
fllustrating progress with case studies, and
discussing themes of the work.

2 ARTIFICIAL INTELLIGERCE & KNOWLEDGE ENGINEERING

The dichotomy that was used to classify the
collected papers in the volume
Computers and Thought still characterizes well the
wotivations and research efforts of the Al
community. First, there are some who work toward
the construction of intelligent artifacts, or seek
to uncover principles, methods, and techaniques
useful in such construction. Second, there are
those who view artificial intelligence as (to use
Newell’s phrase) "theoretical psychology," seeking
explicit and valid information processing models
of human thought.

For purposes of this essay, I wish to focus
on the motivations of the firat group, these days
by far the larger of the tvo. 1 1label these
votivations "the intelligent agent viewpoint”™ and
here i3 my understanding of that viewpoint:

“The potential uses of computers by

people to accomplish tasks can be ‘one-
dimensionalized” into a spectrum
representing the nature of instruction

that must be given the computer to do its
job. Call it the WHAT-TO-HOW spectrum.
At one extreme of the spectrum, the uger
supplies his intelligence to instruct the
machine with precisfoan exactly HOW to do
his job, atep-by-step. Progress in
Computer Science cao be seen as steps avay
from the extreme °‘HOW’ point on the
spectrum: the familiar panoply of assenbly
langusages, subroutioe libraries,
compilers, extensible languages, etc. At
the other extreme of the spectrum is the
user with his real probleam (WHAT he wishes
the computar, as his instrument, to do for
him). He aspires to communicate WHAT he
wants dome {in a language that {is
comfortable to him (perhaps English); via
communication modes that are convenient
for him (including perhaps, speech or

pictures); with some generality, some
vagueness, imprecision, even error;
without having to lay out in detatil all
necessary subgoals for adequate

performance -~ with reasonable assurance
that he is addressing an intelligent agent

that is using knowledge of his world to
understand his intent, to fill {a his
vagueness, to wake specific his
abatractions, to correct his errors, to
discover appropriate subgoals, and
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ultimately to translacte
wants done 1into
define HOW 1t

WHAT he really
processing steps that
shall be done by a real
computer. The research activity aimed at
creating computer programs that act as
"intelligent agents" near the WHAT end of
the WHAT-To-HOW spectrum can be viewed as
the long-range goal of Al research.”
(Feigenbsum, 1974)

Our young science is still more art than
science. Art: “the principles or methods governing
any craft or branch of learning." Art: “skilled
workmanship, execution, or agency." These the
dictionary teaches us. Xnuth tells us that the
endeavor of computer prograeming is an art, in
Juse these ways. The art of constructing
intelligent ageats is both part of and an
extension of the programming art. It is the art of
building complex computer programs that repregent
and ressonm with knowledge of the world. OQur art
therefore lives {n symbiosis with the other
worldly arts, whose practitioners -~ experts of
their art — hold the knowledge we need to
construct intelligent agents. In most “crafts or
branches of learning" what we call “expertise" is
the epsence of the art. And for the domains of

kpowledge that we touch with our art, it is the
"rules of expertise™ or the rules of “good
judgment” of the expert practitioners of that

domaio that we seek to transfer to our progranos.

2.1 Llessops of the Past

Two insights from
pertinent to this essay.

previous work are

The first concerns the quest for generality

and power of the {nfereance engine used in the
performance of dintelligent acts (wvhat Minsky and
Papert [cee GColdatein and Papert, 1977] have

labeled '"the pover strategy"). We must hypothesize
from our experience to date that the problem
solving powver exhibited in an intelligent agent’s
performance {8 primarily a consequence of the
specialist’s koovledge employed by the agent, and
only very secondarily related to the generality
and power of the inference method employed. Our
agents must be knowiedge-rich, even if they are
wethods-poor. In 1970, reporting the firat major
summary-of-results of the DENDRAL program (to be
discussed later), we addressed this issue as
follows:

"...general problem-solvers are too
weak to be used as the basis for building
high-performance systems. The behavior of

the best general problem~solvers we know,
human problem-solvera, i3 observed to be
weak and shallow, except in the areas in

which the human
specialist. And
transfer of

problem—solver is a
it is observed that the
expertise between specialty



areas is slight. A chess master s
unlikely to be an expert algebraist ar an
expert mass spectrum analyst, etc. In
this view, the expert is the specialist,
with a specfalist’s knowledge of his area
and a specialist’s methods and
heuristics.” (Feigenbaum, Buchanan and
Lederberg, 1971, p. 187)

Subsequent evidence from our laboratory and
all others has only confirmed this belief.

Al researchers have dramatically shifted
their viev on generality and power in the past
decade. In 1967, the canonical question about the
DENDRAL program was: "It sounds like good
cbemistry, but what does it have to do with AI?"
In 1977, Goldstein and Papert write of a paradigm
shtft in Al:

“Today there has been a shift in
paradigm. The fundamental problem of
understanding intelligence is not the
identification of a few poverful

techniques, but rather the question of how
to represent large amounts of knowledge in
a fashion that permits their effective use
and interaction.” (Goldstein and Papert,
1977)

work concerns
expert brings

The second insighc from past
the nature of the knowledge that amn
ta the performance of a task. Experience has
showm us that this knowledge i3 largely heuristic
knmowledge, experiential, uncertain -— mostly "good
guesses™ and "good practice,” in lieu of facts and
rigar. Experience has also taught us that much of
this knowledge is private to the expert, not
because he i{s unwilling to share publicly how he
performs, but because he i{s unable. He knows wmore
than he is aware of koowing. (Why else 1s the

Ph.D. or the Internship a guild-like
apprenticeship to a presumed "master of the
craft?” What the masters really know {s not
written in the ctextbooks of the masters.] But we

have learned also that this private knowledge cam
be uncovered by the careful, painstaking analysis
af a second party, or sometimes by the expert
himself, operating in the context of a large
number of highly specific performance problems.
Finally, we have learned that expertise 1is multi-
faceted, that the expert brings to bear many aund
varied sources of knowledge in performance. The
approach to capturing his expertise must proceed
an many fronts simultaneously.
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2.2 The Knowledge Enpineer

The knowledge engineer is that second party
just discussed. {An historical note about the
ters. In the mid-60s, John McCarthy, for reasons
obvious from his work, had been describing
Arcificial Incelligence as "Applied Epistemology."
Yhen 1 first described the DENDRAL program to
Donald Michie in [968, he remarked that {t was
"eplstemological engineering,” a clever but
ponderous and unpronounceable turn-of-phrase that
1 simplified into '"knowledge engineering."] She
(in deference to my favorite knowledge engineer)}
vorks intensively with an expert to acquire
domain-specific knowledge and organize {t for use
by a program. Simultanecusly she iIs wmatching the
tools of the Al workbench to the task at hand -~

program organizations, methods of symbolic
inference, techniques for cthe structuring of
symbolic information, and the like. If the tool
fits, or nearly fits, she uses it. 1f not,
necessity mothers AI 1{invention, aad a uwew tool

gets created. She builds the early versions of che
intelligent ageat, guided always by her intent
that the program eventually achieve expert levels
of performance in the task. She refines or
reconceptualizes the system as the increasing
amount of acgquired Enowledge causes the Al rool to
"break” or slow down intolerably. She also refines
the human interface to the intelligent agent with
several aims: to make the system appear
"comfortable” to the human user in his linguistic
transactions with 1t; to make the system's
inference processes understandable to the user;
and to make the assistance controllable by the
user vhen, 1in the context of a real problem, he
has an 1insight that previously was not elicited
and therefore not {ncorporated.

In the next
summary form) some
engineer’s art.

section, I wish to
case studies of

explore (in
the knowledge

3 CASES FROM THE KNOWLEDGE ENGINEER’S WQRKSHOP

I will drawv material for this
the vork of my group at Stanford.

section from
Huch exciting

work in knowledge engineering (s going on
elsewhere. Since my intent 1is not to survey
literature but to illustrate themes, at the risk

of appearing parochigl I have used ag case studies
the work I know best.

My collaborators (Professors Lederberg and
Buchanan) and I began a series of projects,
initially the development of the DENDRAL program,
in 1965. We had dual motives: first, to study
sclentific problem solving and discovery,
particularly cthe processes scientists do use or
should wuse in {nferring hypotheses and theories
from empirical evidence; and second, to conduct
this study {in such a2 way that our experimental
programs would one day be of use to working
scientists, providing intelligent assistance on
irportant and difficult problems. By 1970, we and
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our co-workers had gained enough experience that

we felt comfortable in laying out a program of
research encompassing work on theory formation,
knowledge wutilizatiom, knowledge acquisition,

explanation, and knowledge engineering techniques.
Although there were some surprises along the way

(like the AM program), the general lines of the
research are proceeding as envisioned.
THEMES

As a road map to these case studies, it is
useful to keep in mind certain major themes:
Ceneration-and-test: Omnipresent {ia our

experiments is the "classical" generation-and-
test framework that has been the hallmark of Al
programs for two decades. This {s not a
consequence of a doctrinaire attitude on our part
about heuristic search, but rather of the

usefulness and sufficiency of the concept.

Sftuaction => Action Rules: We have
represent the knowledge of experts in
Making no doctrinaire claims for the universal
applicability of this representation, we
nonetheless point to the demonstrated wutility of
the rule-based representation. From this
representation flow rather directly many of the
characteristics of our programs: for example,
ease of modification of the knowledge, ease of
explanation. The essence of our approach is that
a rule must capture a "chunk”" of domain knowledge
that is meaningful, In and of itself, to the
domain specialist. Thus our rules bear only a
histor{cal relationship to the production rules
used by Newell and Simon (1972) which we view as
"machine~language programaing"” of a
recognize => act machine.

chosen to
this form.

The Domain-Specific Knowledge: It plays a critical
role in organizing and coustraining search. The
theme 1s that in the knowledge is the pover. The
interesting action arises from the knowledge
base, not the inference engine, We use knowledge
in rule form (discussed sbove), in the form of
inferentially=-rich models based on theory, and in

the form of tableaus of symbollc data and
relationships (i.e. frame-like structures).
System processes are made to conform to natural

and convenient representations of
specific knowledge.

the domain=-

Flexibiliry to modify the knowledge base: If the
so-called “grain size” of the knowledge
representation 1s chosen properly (l.e. small
enough to be comprehensible but large enough to
be meaningful to the domain specialist), then the
rule~based approach allows great flexibility for
adding, removing, or changing knowledge in the
system.

Line-of~reasoning: A central organizing principle
in the design of knowledge-based intelligent
agents is the maintenance of a line-of-reasoning
that i{s comprehensible to the domain specialist.
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This principle is, of course, not
necessity, but seems to us to be
principle of major importance.

a loglcal
an engineering

Multiple Sources of Knowledge: The formation and
maintenance (support) of che linre-of-reasoning
usually require the integration of many disparate
sources of knowledge. The representacional and
i{nferential problems {n achieving a swooth and
effective integration are formidable engineering
problems.

Explanation: The ability to explain the line-of-
reasoning in a language convenient to the user is
necessary for application and for system
development (e.g., for debugging and for extending

the knowledge base). Once again, this 1is an
engineering principle, but very {important. What
constitutes "an explanation” 4is not a simple
concept, and considerable thought needs to be

given, 1Iin each
explanations.

cagse, to the structuring of

CASE STUDIES

In this section I will ¢try to illustrate
these themes with various case studies.

3.1 DENDRAL: Inferring Chemical Structures

3.1.1 Historical Note

Begun 1in 1965, this collaborative project
with the Stanford Mass Spectrometry Laboratory has
become one of the longest-lived continuous efforts
in the history of Al (a fact that in no small way
has contributed to {ts success). The basic
framework of generation-and-test and rule-~based
representation has proved rugged and extendable.
For us the DENDRAL system has been a fountain of
ideas, wany of which have found their way, highly

metamorphosed, into our other projects. For
example, our long~standing comaitment to rule-
based representations arcse out of our
(successful) attempt to head off the imminent

ossification of DENDRAL caused by the rapid

accumulation of new knowledge in the system around
1967.

3.1.2 Task

To enumerate plausible structures (atom-bond
graphs) for organic molecules, given two kinds of
information: analytic instrument data from a mass
spectrometer and a nuclear magnetic resonance
spectrometer; and user-supplied constraints on the
answers, derived from any other source of
knowledge (instrumental or contextual) available
to the user.
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3.1.3 Represcntations

Chemical structures are represented as node-
link graphs of atoms (nodes) and bonds (links).
Constraints on search are represented as subgraphs
(atomic configurations) to be denied or preferred.
The ewmpirical theory of mass spectrometry {is
represented by a set of rules of the general form:

Sftuvation: Parcicular acomic
configuration
{subgraph)

Probabilicy, P,
of occurring

" ——

Action: Fragmentation of the
particular configuration

(breaking links)

Rules of this form are natural and expressive to
mass spectrometrists.

3.1.4 Sketch of Method

DENDRAL’s inference procedure is a heuristic
search that takes place {an three stages, without
feedback: plan~generate-test.

“Generate" (a program called CONGEN) is a
geseration process for plausible satructures. Its
foundation is a combinatorial algorithm {(with
mathematically proven properties of completeness
and pon-redundant generation) that can produce all
the topologically legal candidate structures.
Constraints supplied by the user or by the "Plan”
process prune and steer the generation to produce
the plausible set ({.e. those satisfying the
constraints) and not the enormous legal set.

“Test" refines the evaluation of
plaustbilicy, discarding less worthy candidates
and rank-ordering the remainder for examination by
the user. “Test" first produces a "predicted” set
of instrument data for each plausible candidate,
using the rules described. It then evaluates the
worth of each candidate by comparing its predicted
data with the actual input data. The evaluation
is based on heuristic criterifa of goodness-of-fit.
Thus, "test”" selects the "best” explanations of
the data.

"Plan" produces direct (i.e. not chatned)
inference about likely substructure in the
nolecule from patterns {n the data cthat are
indicative of the presence of the substructure.
(Patterns in che data trigger the left~hand-sides
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of substructure rules). Though composed
atoms whose interconnections are given, the
substructure can be manipulated as atom—like by
"generate.” Aggregating many units entering into a
combinatorial process into fewer higher-lavel
units reduces the size of the combinatorial search

space. "Plan” sets up the search space so as to be

of many

relevent to the input data. "Ganerate 1s the
inference tactician; 'Plan" is the inference
strategist. There is a separate "Plan" package

for each type of instrument data, but each package
passes substructures (subgraphs} to "Generate."
Thus, there is a uniform interface between "Plan"
and “Cenerate." User-supplied constraints enter
this interface, directly or from user-assist
packages, in the form of substructures.

3.1.5 Sources of Knowledge

The various sources of knowledge used by the
DENDRAL system are:

Valences (legal connections of atoms);
stable and unstable configurations of atoms; rules
for mass spectrometry fragmentations; rules for
NMR shifes; expert’s rules for planning and

evaluation; user-suppl ied constraints
(contextual). *
3.1.6 Results

DENDRAL’s structure elucidation abilities

are, paradoxically, both very general and very
narrow. In general, DENDRAL handles all molecules,
cyelic and tree-like. In pure structure
elucidation under constraints (without instrument
data) ,CONGEN is unrivaled by human performance. In
structure elucidation with inatrument data,
DENDRAL’s performance rivals expert  human
performance only for a swmall number of molecular
families for wvhich the program has been given
specialisc’s knowledge, namely the fam{lies of
interest to our chemist collaborators. ! will
spare this computer science audience the list of
names of these families. Withiam these areas of
knowledge-intensive specialization, DENDRAL ‘s
performance 18 usually not only much faster but
also more accurate than expert human performance.

The statement just made summarizes thousands
of runs of DENDRAL on problems of interest to our
experts, their colleagues, and their students. The
results obtained, along with the knowledge that
had to be given to DENDRAL to obtain them, are
published in major journals of chemistry. To date,
25 papers have been published there, under 3
series title “Applicacions of Artificial
Intelligence for Chemical Inference: <specific
subject>" (see references).

The DENDRAL system {s {n
Stanford chemists, their
universities and
interested

everyday
collaborators
collaborating or
chemists {in {ndustry.

use by
at other
otherwise
Users outside
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Stanford access  the
computer/comaunications network. The
thev are solving are often difficult and novel,
The PRritish government {is currently supporting
work at Edinburgh aimed at transferring DENDRAL to
industrial user commun{ties in the UK.

commercial
problems

system over

J.1.7 Discussion

Representation and extensibilicy. The

representation chosen for the molecules,
constraints, and rules of instrument data
interpretation is sufficiently close to that used
by chemists in thinking about structure

elucidation that the
extended smoothly

knowledge base has been
and easily, mostly by chemists

themselves in recent years. Only one major
reprogramming effort took place in the 1last 9
years -- when a new generator was created to deal

with cyelic structures.

Representation and the Integration of
multiple sources of knowledge. The generally
difficult problem of {ntepgrating various sources
of knowledge has been made easy in DENDRAL by
careful engineering of the representations of
objects, constraints, and rules. We insisted on a
common language of compatibility of the
representations with each other and with the
inference processes: the language of molecular
structure expressed as graphs. This leads to a
straightforward procedure for adding a new source
of knowledge, say, for example, the knowledge
associated with a new type of instrument data. The
procedure i{s this: write rules that describe the
effect of the physical processes of the instrument
on molecules using the situation => acrion form
with molecular graphs on both sides; any spectal
inference process using these rules must pass {ts
results to the generator only(!}) 1in the common
graph language.

that the
sources of knowledge 1in
and data interpretation has a
strong effect on quality of performance. How
strong 1is, of course, domain-dependent, but the
impact of bringing just one additional source of
knowledge to bear on a problem can be startling.
In one difficult (but not unusually difficulc)
mass spectrum analysis problem*, the program using
izs mass spectrometry knowledge alone would have
generated an {mpossibly large set of plausibie
candidates (over 1.25 millfon!). Our engineering
response to this was to add another source of data
and knowledge, proton NMR. The addition on a
simple {nterpretive theory of this NMR data, from

It {s today widely believed in AI
use of wmany diverse
problem solving

which the program could fnfer a few additional
constraints, reduced the set of plausible
candidates to one, the right structure! This was

not an isolated result but
times in subsequent analyses.

showed up dozens of

* the analysis of an
C 204454,

acyclic amine with formula
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DENDRAL and data. DENDRAL’s robust models
(topological, chemical, instrumental) permit a
strategy of finding solutions by generating

hypothetical "correct answers" and
these with critical tests. This
opposite to that of piecing
implicactons of each data

choosing among
strategy s
together the
point to form a

hypothesis. We call DENDRAL’s strategy largely
model-driven, and the other data«driven. The
consequence of having enough knowledge to do

model-driven analysis is a large reduction 1in the
amount of data that must be examined since data is

being used mostly for verification of possible
answers. In a typical DENDRAL mass spectrum
analysis, wusually no more than about 25 data
points out of a typical total of 250 points are
processed. This important point about data
reduction and focus=of-attention has  been
discussed before by Gregory (1968) and by the

vision and speech research groups, but
widely understood.

is not

Conclusion. DENDRAL was an carly herald of
Al°s shift to the knowledge-based paradigm. It
demonstrated the paint of the primacy of domain-~
specific knowledge 1n achieving expert levels of
performance. Its developmert brought to the

surface important problems of knowlcdge
representation, acquisition, and use. It showed
that, by and large, the Al tools of the first

decade were sufficient to cope with the demands of
a complex scientific problem-solving task,or were
readily extended to handle unforseen difficulties.
It demonstrated that Al°s  conceptual and
programming tools were capable of producing
programs of applications {nterest, albeit {n
narrow speclalties. Such a demonstration of
competence and sufficlency was important for the
credibility of the AT field at a critical juncture
in {ts history.

3.2 META-DENDRAL: inferring rules of mass
spectrometry

3.2.1 Historical note

The META-DENDRAL program is a case
automatic acquisition of domain knowledge. It
arose out of our DENDRAL work {or two reasons:
first, a decision that with DENDRAL we had a
sufficiently firm foundation on which to pursue
our long=-standing interest in processes of
scientific theory formation; second, by 3
recognition that the acquisition of domatin
knowledge was the bottleneck problem in the

study ip

butlding of applications-oriented intelligent
agents.
3.2.2 Task

META-DENDRAL’s job iIs to finfer rules of

fragmentation of molecules in a
for possible later use by the

mass spectrometer
DENDRAL performance



from actual
molecular structures.

program. The inference is to be made
spectra recorded from known

The output of the systenm is the set of
fragmeantation rules discovered, summary of the
evidence supporting each rule, and a summary of
contra-indicacing evidence. User-supplied

constraints can also be input to force the form of
rules along desired lines.

3.2.3 Representations

The rules are, of course, of the same form
as used by DENDRAL that was described earlier.

3.2.4 Sketch of Method

META-DENDRAL, like DENDRAL, uses the
peneration-and-test framework. The process is
organized {n threce stages: Reinterpret the data
and summari ze evidence (INTSUM); generate

pluusible candidates for rules (RULEGEN); test and
refine the set of plausible rules (RULEMOD).

INTSUM: gives every data
spectrum an interpretation as a
specific) fragmentation. It
statistically the "weight of
fragmentations and for atomic
cause these fragmentations.
INTSUM is to translate data to
and bond-breaks, and to
asccordingly.

point in every
possible (highly
then summarizes
evidence”" for
configurations that
Thus, the Jjob of
DENDRAL subgraphs
summarize the evidence

RULEGEN: conducts a heuristic search of the
space of all rules that are legal under the
DENDRAL rule syntax and the user-supplied
constraints, It searches for plausible rules, i.e.
those for which positive evidence exists. A search
path is pruned when there is no evidence for rules
of the class just generated. The search tree
begins with che (single) most general rule
(loosely put, “anything” fragments from
"anything") and proceeds level~by-level toward
more detailed specifications of the "anything."”
The heuristic stopping criterion measures whether
a rule being generated has become too specific, in
particular whether {t 1is applicable to too few
wolecules of the input set. Simtlarly there is a
criterion for deciding whether an emerging rule is
too general. Thus, the output of RULEGEN is a set

of candidate rules for which cthere is positive
evidence.

RULEMOD: tests the candidate rule set using
more complex criteria, including the presence of

negati{ve evidence. It removes redundancies in the
candidate rule set; merges rules that are
supported by the same evidence; tries further

specialization of candidates to
evitence; and tries further
preserves positive evidence.

remave negative
generalization thac
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3.2.5 Results

META-DENDRAL produces
ia quality those produced by our collaborating
experts. In some tests, META-DENDRAL recreated
rule sets that we had previously acquired from our

rule sets that rivail

experts during the DENDRAL project. In a more
stringent test {nvolving members of a family of
complex ringed wmolecules for which the wnass

spectral theory had not been completely worked out
by chemists, META-DENDRAL discovered rule sets for
each subfamily. The rules were judged by experts
to be excellent and a paper describing them was
recently published in a major chemical journal
(Buchanan, Smith, et al, 1976).

In a test of the generality of the approach,
a version of the META-DENDRAL program {s currently
being applied to the discovery of rules for the
analysis of nuclear magnetic resonance data.

3.3 MYCIN and TEIRESIAS: Medical Diagnosis

3.3.1 Historical note
MYCIN originated in the Ph.D. thesis of E.
Shortliffe (now Shortliffe, M.D. as well), in

collaboration with the Infectious Disease group at

the Stanford Medical School (Shortliffe, 1976).
TEIRESIAS, the Ph.D. thesis work of R. Davis,
arose from 1issues and problems indicated by the
MYCIN project but general{zed by Davis beyond Lhe
bounds of wmedical diagnosis plications (Davis,
1976). Other  MYCIN-related theses are in
progress.

3.3.2 Tasks

The MYCIN performance task s diagnosis of
blood {afections and meningitis infections and the
recommendation of drug treatment. MYCIN conducts
a consultation (in English) with a physician-user

about a patient case, constructing lines-of-
reasoning leading to the diagnosis and treatment
plan.

The TEIRESIAS knowledge acquisition task can
be described as follows:

In the context of a particular consulcation,
confront the expert with a diagnosis with which he
does not agree. Lead him systematically back
through the line-of-reasoning that produced the
diagnosis to the point at which he indicates the

analysis went awvry. Interact with the expert to
modify offending rules or to acquire new rules.
Rerun the consultation to test the solution and

galn the expert’s concurrence.
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3.3.3 Representations: 3.3.4 Sketch of method
MYCIN’s rules are of the form: MYCIN employs a generation-and-~test
procedure of a famillar sort. The generation of
IF <conjunctive clauses> THEN <implication> steps in the line~of-reasoning is accomplished by
backward chaining of the rules. An 1IF-side clause
Here {s an example of a MYCIN rule for blood is either immediately true or false (as determined
infections. by patient or test data entered by the physician

{n the consultation); or s to be decided by
subgoaling. Thus, "“test" is interleaved with
"generation" and serves to prune out incorrect

lines-of~reasoning.
RULE_ 85 Bach rule supplied by an expert has
associated with 1t a '"degree of certainty"
IF: representing the experts confidence in the
1) The site of the culture is blood, and validity of the rule (a number from | to 10).
2) The gram stain of the organism is MYCIN uses a particular ad-hoc but simple model of
gramneg, and inexact reasoning to cumulate the degrees of
3) The morphology of the organiam is certainty of the rules used in an Inference chain
rod, and {Shortliffe and Buchanan, 1975).

4) The patient is a compromised host
It follows that there may be a number of

THEN: “somewhat true® lines-of-reasoning ~— some

There is suggestive evidence (.6) that indicating one diagnosis, some indicating another.

the identity of the organism is All (above a threshold) are used by the system as

pseudomonas—aeruginosa sources of knowledge indicating plausible lines-
of-reasoning.,

TEIRESIAS” rule acquisition process is based
on a record of MYCIN s search. Rule acquisition is
guided by a set of rule models that dictate the
form and indicate the likely content of new rules.
Rule models are not given in advance, but are
TEIRESIAS allows the representation of inferred from the knowledge base of existing

MYCIN~like rules governing the use of other rules.
rules,{.e. rule-based strategies. An example
follows.

3.3.5 Language of Interaction

The language used looks like it might be
English but {s actually the dialect “Docior-ese"
used by members of the tribe of healiog arts
practitioners. Reasonably simple } anguage
procassing methods suffice. When ambiguities of
interpretation are encountered, they are {ed back
to the user for decisions about meaning.

METARULE 2
3.3.6 Example diagnosis and treatment plan
IF:
1) the patient is a compromised host, and The following is an example of a disgnosis
2) there are rules vhich mention in their reported by MYCIN to one of its users following a
premise pseudomonas consultation. An example consultation will not be
3) there are rules which mention in their shown, but one can be found in Shortliffe’s book
premise klebsiellas (Shortiiffe, 1976).
THEN:

There is suggestive evidence (.4) that the
former should be done before the latter.

My therapy recommendations will be designed
to treat for organisms that are etther very
likely or, although less likely, would have
a significant effect on therapy selection
if they were present. It is ilmportant to

196



cover for the following probable
infection(s) and associated organism(s):

INFECTION-l 1s CYSTITIS

<ltem 1> PSEUDOMONAS-CEPACIA [ORCANISM~5)
<Item 2> CITROBACTER-DIVERSUS [ORGANISM-4]
<Item 3> E.COLI {ORGANISM=3]

INFECTION=2 is UPPER-RESPIRATORY~-INFECTION
<ltem 4> LISTERIA [ORGANISM-2}

INFECTION=-3 {s BACTEREMIA
<Item 5> ENTEROCOCCUS (ORCANISM-1]

(REC~1] My preferred therapy recommendation
is as follows:

In order to cover for Items <! 2 3 4 5>:

Give the following in combinmation:

1) KANAMYCIN

Dose: 750 wg (7.5 =g/kg) qlzh IM (or 1IV)
for 28 days

Comments: Modify dose in remal failure

2) PENICILLIN

Dose: 2,500,000 units (25000 units/kg)
q4h IV for 28 days

3.3.7 Results

MYCIN 1is currently being prepared for
clinical evaluation. In a preliminary evaluation,
done outside of the clinical setting, a panel of
expert judges was  asked to rate MYCIN's
performance along a number of dimensions (e.g.
infecting organism identification, organism
significance). In 902 of the cases subuitted to
the judges, a majority of the judges said that the
program’s decisions were the-same-ss or as-good-as
the decisions they would have made.

3.3.8 Explamation

MYCIN can expose its line of reasoning by
offering explanations of various kinds. "Why" and
"How" questions can be asked by the user during
the consultatfon. "Why” (s the user’s way of
inquiring, "Why do you want to know thar?” "How"
is his way of asking, "“How did you conclude
that...?" In a pest-consultation, he can similarly
inquire about how the diagnostic conclusions were
reached, and inquire about the reasons why certain
other conclusions were ruled ocut. Examples of the
MYCIN~-TETRESIAS explanation capabiliries follow:

Appendix C

MYCIN: Is the patient’s illness with
ORGANISM~l a hospital~acquired infection?
USER: WHY

TEIRESIAS: (i.e. WHY s it important to
determine whether or not the infection with
ORGANISM~l was acquired while the patient
was hospitalized?)

f1.0] This will aid in determining the
category of ORGANISM-1.

It has already been escablished that

{1.1] the gram stain of ORGANISM-l is
gramneg, and

{l1.2] the morphology of ORGANISM=l is rod,
and

[1.3] the aerobicity of ORCANISM-! is
facultative

Therefore, if

{l1.4] the infection with ORGANISM~l was not
acquired wvhile the patient was hospitalized

then

there is strongly suggestive evidence (.8}
that the category of ORGANISM-! is
enterobacteriaceae

Also: there i3 weakly suggestive evidence
{.1) that the identity of

ORGANISM~1 i3 pseudomonas-seruginosa

[RULE 37]

USER: HOW 1.3

TEIRESIAS: {1.e. HOW was it escablished
that the aerobicity of ORGANISHM=l {s
facultative?]

The following were used:

[3.1] RULE 27 indicated there 1s strongly
suggestive evidence (.8) that _he
aerobicity of ORGANISM-1l i{s facultative

[3.2] RULE 27 indicated there is weakly
suggestive evidence (.2) that the
aerobicity of ORGANISM~! is anaerobic

Since this gave a cumulacive CF of (.8) for
facuitative, and (.2) for anaerabic, it has
been established that the aerobicity of
ORGAKISM=~1 is facultative.
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USER: WHY DIDN’T YOU CONSIDER
STREFTOCOCCUS AS A POSSIBILITY FOR
ORGANISM~-1?

TEIRESIAS: The following rule could have
been used to determipe that the identify of
ORCANISM~|l was streptococcus: RULE 33

But clause 2 ("the morphology of the
organism is coccus”) was already known

to be falae for ORGANISM-I, so the rule was
never tried.

3.3.9 Discussion

A few short comments aimed

engineering are in order.

at knowledge

English is the language most natural and
comfortable for our experts and users, and vas
therefore the language chosea for 1interactive
consultation, explanation, and external

representation of the rules (the 1internal format
is INTERLISP). This situation is not peculiar to
doctors; in most areas of application of
inteliligent agents I believe that English (i.e.
natural language) will be the language of choice.
Programming an Eaglish language processor and
front-end to asuch systems 1is not & scary
enterprise because:

a) the domain is specilalized, so that
possible interpretations are constrained.

b) specialisct-talk is replete with standard
3argon and stereotyped ways of expressing
knowledge and queries — just right for text
templates, simple grammars and other sinmple
processing schemes.

¢) the ambiguity of interprecation resulting
from simple schemes can be dealt with easily by
feeding back interpretations for confirmation. If

this is dome with a2 pleasant "I didn’t quite
understand you...” tons, 1t is not {rritating to
the user.

Engliash wmay be exactly the wrong language
for representation and intsraction in some
domains. It would be avkward, to say the least, to
tepresent DENDRAL’s chemical structures and
knovledge of mass spectrometry in Eanglish, or to
interact about these with s user.

Simple explanation schemes have been
of the Al scene for a number of years and
hard to implement. Really good models
explanation is as a transaction between user and
agent, with programs to implement these models,
vill be the subject (I predict) of much future
research in AI.

a part
are not
of what
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Without the explanation capability, I
agsert, user acceptance of MYCIN would have been

ail, and there would have been a greatly
diminished effectiveness and contribution of our
experts.

MYCIN was the first of our programs that
forced us to deal with what we had always
understood: that experts’ knowledge 1s uncertain
and that our inference engines had to be made to
reason with this uncertainty. It is less important
that the inexact reasoning scheme be formal,
rigorous, and uniform than it is for the scheme to
be natural to and easily underatandable by the
experts and users.

All of these points can be summarized by
saying that MYCIN and icts TEIRESIAS adjunct are
experimencts in the design of a see~through system,
vhose representations and processes are almost
transparently clear to the domain specialisc.
"Almost® here is equivaleant to "with a few minutes
of introductory description.” The various pieces
of MYCIN -~ the backward chaining, the English
transactions, the explanations, ete. — are each
simple in concept and reslization. But there are
great virtues to simplicity in system design; and
viewed as a total intelligent agent aystem,
MYCIN/TEIRESIAS' is one of the best engineered.

3.4 SU/X: signal understanding

3.4.1 Historical note
SU/X is a system design that was tested in
an application whose details are classified.

Because of this, the ensuing dfscussion will

appear considerably less concrete and tangible
than the gpreceding case stud{es. This system
deaign was done by H.P. N{i and wme, and was

strongly influenced by cthe CMU Hearssy II aystem
design.

3.4.2 Task

SU/X"s task 1s the formation and continual
updating, over long periods of time, of hypotheses
about the i{dentity, location, and velocity of
objects in & physical space. The output desired is
a display of the “current best hypotheses" with
full explanation of the support for each. There
are two types of imput data: the primary signal
(to be understood); and auxiliary symbolic data
{(to supply context for the understanding). The
primacy signals are spectra, represented as
descriptions of the spectral lines. The various
spectra cover the physical space with some spatial
overlap.



J.4.3 Representations

The rules given by the expert about objects,
their bebhavior, and the interpretation of signal
data from them are all represented in the
situation => action form. The "stituations"
constitute invoking conditions and the "actions”
are processes that modify the current hypotheses,
post unresolved 1sgues, recompute evaluations,
etc. The expert’s konowledge of how to do analysis
ia the task ia also represented in rule form.
These scrategy rules replace the normal executive
program.

The situation-hypothesis i¢ represented as s
node-link graph, tree-like in that it hss distinct
"levels,” each representing a degree of
abstraction (or aggregation) that is natural to
the expert iz his understanding of the domainm. A
node represents an hypothesis; a liank to that node
represents support for that hypothesis (as inm
HEARSAY II, "support from above" or ‘“support from
belou”). "Lower" levels are concerned with the
specifics of the signal data. "Higher" levels
represent symbolic abstractions.

3.4.4 Sketch of wmethod

The situation-hypothesis is formed
incrementally. As the situation unfolds over time,
the triggering of rules modifies or discards
existing hypotheses, adds new ones, or changes
support values. The situation-hypothesis i1s a
common workspace (“blackboard,"” in HEARSAY jargon)
for all the rules.

In general, the incremental steps toward a
moce complete and refined situatioo-hypothesis can
be viewed as a sequence of local generate-and-test
activities. Some of the rules are plausible move
generators, generating either nodes or links.
Other rules are evaluators, testing and modifying
node descripcions.

In typical operation, new data 1is submitted
for processing (say, N time-units of new data).
This inittates a flurry of rule-triggerings and
consequently rule-sctions (called “events”). Some
events are direct cousequences aof the data; ocher
events arise 1o a cascade-like fashion from the
triggering of rules. Auxiliary symbolic data also
cause events, usually affecting the higher levels
of the hypothesis. As a consequence, support-
from~above for the lover level proceases is nade

avatlable; and expectations of possible lower
level events can be formed. Eventually all the
relevant rules have their say and che system

becomes quiescent, thereby triggering the input of
new data to re-energize the inference activity.

The system uses the simplifying strategy of
maintaining only one "best” situation-hypothesis
at any moment, wmodifying {t {ncrementally as
required by the changing data. This approach is
made feasible by several characteristics of the

{(specifically, they do not change
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domain.
over

Firse,
time of

there {s the
objects and

strong continuity
their behaviors

radically over
time, or behave radically differently over short

periods). Second, a single problem (identicy,
location and velocity of a particular set of
objects) persists over numerous daca gathering
periods. (Compare this to speech understanding in
which each sentence is spoken just omnce, and each
presents a nev and different problem.) Finally,
the system’s hypothesis is typically "almosc
right " in part because it gets numerous
opportunities to refine the solution (i.e. the

numerous data gathering perfods), and 1n part
because the availability of many knowledge sources
teuds to over~determine the solution. As a result
of all of these, the current best hypothesis
changes only slowly with time, and hence keeping
only the current best is a feasible approach.

Of interest are the time-based events. These
rule~like expressions, created by certain rules,
trigger upon the passage of specified awmounts of

time. They implement various "wait-and-see”
strategies of analysis that are useful 1n the
deomain.

3.4.5 Results

In the test application, using
generated by a simulation program bdecause real
data was not available, the program achieved
expert levels of performance over a span of test
problems. Some problems were difficult because
there was very little primary sigoal to support
inference. Others were difficult because too much
signal induced a plethora of alternatives with
nuch ambiguity.

signal data

A modified SU/X design {s currently being
used as the basis for an application to the
interpretation of x-ray crystallographic data, the
CRYSALIS program mentioned later.

3.4.6 Discussioa

The role of the auxiliary symbolic sources
of data i{s of critical {mportance. They supply a
symbolic model of the existing situation that is
used to generate expectations of events to be
observed in the data stream. This allows flow of
inferences from higher levels of abstraction to
lower. Such a process, so familiar to Al
researchers, apparently {s almcst unrecognized
among signal processing engineers. In the
application task, the expectation~-driven analysis
is easential 4in coantrolling the combinatortal
processing explosion at the lower levels,exactly
the explosion that forces the traditional signal
processing engineers to seek out the largest
possible number-cruncher for their work.

The design
the user takes

of appropriate explanations for
an interesting twist in SU/X. The

‘0
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situation-hypothesis unfolds piecemeal over time,

but the "appropriate” explanation for the user {s
one that focuses on individual objects over time.
Thus the appropriate explanation rust be
synthesized from a history of all the events that
led up to the current hypothesis. Contrast this
with the MYCIN-TEIRESIAS reporting of rule
invocations {n the construction of a reasoning
chain.

Since its knowledge base and 1its auxiliary
symbolic data give it a model-of~the-situation
that strongly constrains interpretation of the
primary data stream, SU/X is relatively
unperturbed by errorful or wumissing data. These
data conditions merely cause fluctuations 1in the
credibility of individual hypotheses and/or the
creation of the "wait-snd-see" events. SU/X can de
(but has not yet been) used to control sensors.
Since its rules specify what types and values of
evidence are necessary to establish support, and
since it 1s constantly processing a complete
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scientific hypothesis testing to the eaterprise of
mathematical discovery.

Inftialized with concepts of elementary set

theory, 1t conjectured concepts ia elemencary
cumber theory, such as "add," "multiply” (by four
distinct paths!), "primes,"” the unique

factorization theoream, and a concept similar to
primes but previously not mnuch studied called
"maximally divisible numbers."

3.5.2 MOLGEN: planning experiments in molecular
genetics

MOLGEN a8 collaboration with the Stanford
Genetics Department, is work in progress.
MOLGEN“s rask is to provide intelligent advice to
4 wmolecular geneticist on the planning of
experiments involving the manipulation of DNA. The
geneticist has various kinds of laboratory
techniques available for changing DNA marerial
(cuts, joins, insertions, deletions, and so on);
techniques for determining the biological

hypothesis structure, it can request "critical
readings” from the sensors. In general, this
allows an efficient use of limited r
bandwidth and  data acquiaition processing

capability.

3.5 OTHER CASE STUDIES

Space does not allow more than just
sketch of other interesting projects
been completed or are in progress.

a brief
that have

3.5.1 AM: mathematical discovery

AM i{s & knovledge-based systea that
conjectures interesting concepts in elementary
cacthematics. It i4s a discoverer of interesting
theorems to prove, not a theorem proving program.
It was conceived and executed by D. Lenat for his
Ph.D. thesis, and 1is reported by him in these
proceedings ("An Overview of AM").

AM°s  knowledge is basically of two types:
rules that suggest possibly interesting new
concepts from previously conjectured concepts; and

rules that evaluate the mathematical
"interestingness” of a conjecture. These rules
attempt to capture the expertise of the
professional oathemstician at the task of
mathematical discovery. Though Lenat 1is not a
professional pathematician, he was  able
successfully to serve as his own expert 1in the

building of this prograam.

AM conducts a heuristic search through the
space of concepts creatable from its rules. Its
basic framework (s generation-and-test. The
generation {s plausible mnove genetation, as
indicated by the rules for formation of new
concepts. The test ia the evaluation of
“{nterestingness.” Of particular note is the
method of test-by-example that lends the flavor of
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quences of the changes; varicus instruments
for measuring effects; various chemical methods
for inducing, facilitating, or inhibiting changes;
and many other‘tools.

MOLGEN will offer planning assistance in
organizing and sequencing such tools to accomplish
an experimental goal. In addicfon MOLGEN will
check user-provided experiment plans for
feasibility; and {ts knowledge base will be a
repository for the rapidly expanding knowledge of
this specialty, available by interrogation.

Current efforts to engineer a knowledgc-base
wanagement systex for MOLGEN are described by
Martin et al in a paper in these proceedings. This
subsystem uses and extends the techniques of the
TEIRESIAS systenm discussed earlier.

In MOLGEN the problem of integration of many
diverse sources of knowledge is central since the
assence of the experiment planning process is the
successful merging of biological, genetic,
chemical, topological, and 4instrument knowlicdge.
In MOLGEN the problem of representing processes is
also brought into focus since the expert’s
knowledge of experimental astrategies —- proto=
plans -- must also be represented and put to use.

3.5.3 CRYSALIS: inferring protein structure from
electron density maps

CRYSALIS, too, is work in progress. Its task
ias to hypothesize the structure of a protein from
a map of electron density that 18 derived from x-
ray crysctallographic data. The map 18 three-
dimensional, and the contour information {s crude
and highly ambiguous. Interpretation is guided
and supported by auxiliary {nformation, of which
the amino acid sequence of the protein’s backbone
is the most important. Density wmap interpretation



